1. 程式人生 > >【Python資料預處理】 歸一化(按列減均值,除方差),標準化(按列縮放到指定範圍),正則化(範數)

【Python資料預處理】 歸一化(按列減均值,除方差),標準化(按列縮放到指定範圍),正則化(範數)

一、標準化(Z-Score),或者去除均值和方差縮放

公式為:(X-mean)/std  計算時對每個屬性/每列分別進行。

將資料按期屬性(按列進行)減去其均值,並處以其方差。得到的結果是,對於每個屬性/每列來說所有資料都聚集在0附近,方差為1。

實現時,有兩種不同的方式:

  • 使用sklearn.preprocessing.scale()函式,可以直接將給定資料進行標準化。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

>>> from sklearn import preprocessing

>>> import numpy as np

>>> X = np.array([[ 1., -1.,  2.],

...               [ 2.,  0.,  0.],

...               [ 0.,  1., -1.]])

>>> X_scaled = preprocessing.scale(X)

>>> X_scaled                                         

array([[ 0.  ..., -1.22...,  1.33...],

[ 1.22...,  0.  ..., -0.26...],

[-1.22...,  1.22..., -1.06...]])

>>>#處理後資料的均值和方差

>>> X_scaled.mean(axis=0)

array([ 0.,  0.,  0.])

>>> X_scaled.std(axis=0)

array([ 1.,  1.,  1.])

  • 使用sklearn.preprocessing.StandardScaler類,使用該類的好處在於可以儲存訓練集中的引數(均值、方差)直接使用其物件轉換測試集資料。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

>>> scaler = preprocessing.StandardScaler().fit(X)

>>> scaler

StandardScaler(copy=True, with_mean=True, with_std=True)

>>> scaler.mean_                                     

array([ 1. ...,  0. ...,  0.33...])

>>> scaler.std_                                      

array([ 0.81...,  0.81...,  1.24...])

>>> scaler.transform(X)                              

array([[ 0.  ..., -1.22...,  1.33...],

[ 1.22...,  0.  ..., -0.26...],

[-1.22...,  1.22..., -1.06...]])

>>>#可以直接使用訓練集對測試集資料進行轉換

>>> scaler.transform([[-1.1., 0.]])               

array([[-2.44...,  1.22..., -0.26...]])

二、將屬性縮放到一個指定範圍

除了上述介紹的方法之外,另一種常用的方法是將屬性縮放到一個指定的最大和最小值(通常是1-0)之間,這可以通過preprocessing.MinMaxScaler類實現。

使用這種方法的目的包括:

1、對於方差非常小的屬性可以增強其穩定性。

2、維持稀疏矩陣中為0的條目。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

>>> X_train = np.array([[ 1., -1.2.],

...                     [ 2.0.0.],

...                     [ 0.1., -1.]])

...

>>> min_max_scaler = preprocessing.MinMaxScaler()

>>> X_train_minmax = min_max_scaler.fit_transform(X_train)

>>> X_train_minmax

array([[ 0.5       0.        1.        ],

[ 1.        0.5       0.33333333],

[ 0.        1.        0.        ]])

>>> #將相同的縮放應用到測試集資料中

>>> X_test = np.array([[ -3., -1.4.]])

>>> X_test_minmax = min_max_scaler.transform(X_test)

>>> X_test_minmax

array([[-1.5       0.        1.66666667]])

>>> #縮放因子等屬性

>>> min_max_scaler.scale_                            

array([ 0.5       0.5       0.33...])

>>> min_max_scaler.min_                              

array([ 0.        0.5       0.33...])

當然,在構造類物件的時候也可以直接指定最大最小值的範圍:feature_range=(min, max),此時應用的公式變為:

X_std=(X-X.min(axis=0))/(X.max(axis=0)-X.min(axis=0))

X_scaled=X_std/(max-min)+min

三、正則化(Normalization)

正則化的過程是將每個樣本縮放到單位範數(每個樣本的範數為1),如果後面要使用如二次型(點積)或者其它核方法計算兩個樣本之間的相似性這個方法會很有用。

Normalization主要思想是對每個樣本計算其p-範數,然後對該樣本中每個元素除以該範數,這樣處理的結果是使得每個處理後樣本的p-範數(l1-norm,l2-norm)等於1。

             p-範數的計算公式:||X||p=(|x1|^p+|x2|^p+...+|xn|^p)^1/p

該方法主要應用於文字分類和聚類中。例如,對於兩個TF-IDF向量的l2-norm進行點積,就可以得到這兩個向量的餘弦相似性。

1、可以使用preprocessing.normalize()函式對指定資料進行轉換:

1

2

3

4

5

6

7

8

9

>>> X = [[ 1., -1.2.],

...      [ 2.0.0.],

...      [ 0.1., -1.]]

>>> X_normalized = preprocessing.normalize(X, norm='l2')

>>> X_normalized                                     

array([[ 0.40..., -0.40...,  0.81...],

[ 1.  ...,  0.  ...,  0.  ...],

[ 0.  ...,  0.70..., -0.70...]])

2、可以使用processing.Normalizer()類實現對訓練集和測試集的擬合和轉換:

1

2

3

4

5

6

7

8

9

10

11

12

>>> normalizer = preprocessing.Normalizer().fit(X)  # fit does nothing

>>> normalizer

Normalizer(copy=True, norm='l2')

>>>

>>> normalizer.transform(X)                           

array([[ 0.40..., -0.40...,  0.81...],

[ 1.  ...,  0.  ...,  0.  ...],

[ 0.  ...,  0.70..., -0.70...]])

>>> normalizer.transform([[-1.1., 0.]])            

array([[-0.70...,  0.70...,  0.  ...]])

補充: