1. 程式人生 > >moment, 一階矩,二階矩, 隨機變數

moment, 一階矩,二階矩, 隨機變數

http://hi.baidu.com/karashun/item/c89846f4c4b22dcb521c2679

在物理中,有力矩(moment of force)= F*L (力* 力臂)

在概率統計中,有一階矩,二階矩, 三階矩,四階矩。

不嚴格的講,這個”矩“是用來描述  一個點集合的形狀。比如,一維上的中點,二維上的一個橢圓,或是用來描述距離 中點(或 最高點)偏離情況。

最常見的用法,

\mu_k=E((X-\mu)^k).\,

一階矩為均值 μ1

二階矩為方差,

三階矩為 Skewness(偏斜)

四階矩為

Moments of a Probability Distribution
We are now familiar with some of the properties of probability distributions. On this page we will introduce a set of numbers that describe various properties of such distributions. Some of these have already been encountered in our previous discussion, but now we will see that these fit into a pattern of quantities called 
moments of the distribution.



Moments


Let $ f(x)  $ be any function which is defined and positive on an interval $ [a,b] $ . We might refer to the function as a distribution, whether or not we consider it to be a probability density distribution. Then we will define the following moments of this function: 



Observe that moments of any order are defined by integrating the distribution $ f(x)  $

 with a suitable power of x over the interval [a,b]. However, in practice we will see that usually moments up to the second are usefully employed to describe common attributes of a distribution.

Moments of a Probability Density Distribution


In the particular case that the distribution is a probability density, we have already established the following : 


This follows from the facts that probability distributions are normalized so that the area under the curve is always 1, (hence the zero'th moment is 1) and the average, or mean of the distribution is defined by the integral that also happens to be the first moment. In the past we have used the symbol $ {\bar x}  $
 to represent the mean or average value of x but often the symbol $ \mu  $is also used for this quantity. 
But what role does the second moment, 

play ? We will shortly see that the second moment helps describe the way that the "mass" or probability density is distributed about its mean. For this purpose, we must describe the notion of variance or standard deviation.



Variance and Standard Deviation

Two kids of roughly the same size can balance on a teeter-totter by sitting very close to the point at which the beam pivots as shown in the diagram below. They can also achieve a balance by sitting at the very ends of the beam, equally far away as shown in the next diagram. In both cases, the center of mass of the distribution is at the same place: precisely at the pivot point. However, the mass is distributed very differently in these two cases. In the first case, the mass is clustered close to the center, whereas in the second, it is distributed further away. The line segment under the two diagrams represents how far away the masses are from the center of mass. In the first case, this distance is small. In the second case it is larger. 

If we want to be able to describe how mass is distributed, we need to talk about attributes of the mass distribution other th the center, whereas in the second, it is distributed further away. The line segment under the two diagrams represents how far away the masses are from the center of mass. In the first case, this distance is small. In the second case it is larger. 

If we want to be able to describe how mass is distributed, we need to talk about attributes of the mass distribution other than just where its center of mass is located. Similarly, if we want to explain to someone how a probability density distribution is distributed about its mean, we would have to consider moments higher than the first. This is precisely what we shall do below. We will use the idea of the variance to describe whether the distribution is clustered close to its mean, or spread out over a great distance from the mean. 

The variance is defined as the average value of the quantity $ (distance ~from~mean)^2  $ . This average is taken over the whole distribution. (The reason for the square is that we would not like values to the left and right of the mean to cancel out. ) 

The standard deviation is defined as $ \sqrt{variance}  $ . 

If we had a random variable that takes on only discrete values $ x_i $ , with probability $ p_i $ and this discrete probability distribution has mean $ \mu $ we would define the variance as the average given by 

Note that it is not necessary to divide by the number of values because the sum of the discrete probabilities is 1, i.e. $ \sum p_i=1 $ . Now for a continuous probability density, with mean $ \mu $ , we define similarly 

The standard deviation is then Let us see what this implies about the connection between the variance and the moments of the distribution. From the equation for variance we calculate that Thus 
We recognize the integrals in the above expression, since they are simply moments of the probability distribution. Plugging in these facts, we arrive at 

Thus the variance is clearly related to the second moment and to the mean of the distribution. Further, the standard deviation is then 

Example

Consider the continuous distribution, in which the probability is constant for values of x in the interval [a,b] and zero for values outside this interval. Such a distribution is called a uniform distribution. (It has the shape of a rectangular band of height C and base (b-a).) It is easy to see that the value of the constant C should be 1/(b-a) so that the area under this rectangular band will be 1, in keeping with the property of a probability distribution. 
We compute that 

(this was already known to us, since we have determined that the zero'th moment of any probability density is 1.) We also find that 

This last expression can be simplified by factoring, leading to 


Thus we have found that the mean $ \mu $ is in the center of the interval [a,b], as expected. The median would be at the same place by a simple symmetry argument: half the area is to the left and half the area is to the right of this point. 

To find the variance we might first calculate the second moment, 

It can be shown by simple integration that this yields the result 

We would then compute the variance 

After simplification, we get 

The standard deviation is then 

相關推薦

、三

此處擷取其中的一段: In mathematics, a moment is a specific quantitative measure, used in both mechanics and statistics, of the shape

現在有棵合法的叉樹樹的節點都是用數字表示現在給定這棵樹上所有的父子關係求這棵樹的高度

題目描述 現在有一棵合法的二叉樹,樹的節點都是用數字表示,現在給定這棵樹上所有的父子關係,求這棵樹的高度 輸入描述: 輸入的第一行表示節點的個數n(1 ≤ n ≤ 1000,節點的編號為0到n-1)組成, 下面是n-1行,每行有兩個整數,第一個數表示父節點的編號,第二個數表示子節點的編號

數字影象的微分和微分

數字影象的微分也就是數字函式的微分有很多不用的定義,但是任何定義都必須保證一下幾點: 一階微分:(1)在恆定灰度區域的微分值為零;                   (2)在灰度臺階或斜坡處微分值非零;                   (3)沿著斜坡的微分值非零;

MPU6050 + 互補濾波+互補濾波+卡爾曼濾波 +波形比較

1、卡爾曼濾波函式 void Kalman_Filter_X(float Accel, float Gyro) { Angle_X_Final += (Gyro - Q_bias_x) * dt; //先驗估計 Pdot[0] = Q_angle -

方法列印等長的維陣列要求從1開始的自然數由方陣的最外圈向內螺旋方式地順序排列。 如: n = 4 則列印:

/* * 22、 寫一方法,列印等長的二維陣列, * 要求從1開始的自然數由方陣的最外圈向內螺旋方式地順序排列。 如: n = 4 則列印: 1 2 3 4 12 13 14 5 11 16 15 6 10 9 8 7 */ public class Test22 {

SQL查詢年的十個月份形成報表

SELECT YEAR(日期欄位) 年度,SUM(CASE WHEN MONTH(日期欄位) =1 THEN 統計的欄位 ELSE 0 END) 一月, SUM(CASE WHEN MONTH(日期欄位) =2 THEN 統計的欄位 ELSE 0 END)

DP揹包問題小結(01揹包完全揹包需恰好裝滿或不需維DP、維DP)

1) 揹包基礎,先以01揹包、求揹包所裝物品價值之和的最大值、不要求恰好裝滿時,易於理解的二維DP陣列儲存為例: #include <iostream> #include <string.h> using namespace std; int

全能自定義環境鍵快速安裝PHP7.2版本32/64位任選

normal phpwamp 下載地址 ott 相對 新版 round -o href 想要在windows環境下快速搭建最新的PHP版本,可以使用全能自定義PHP集成環境PHPWAMP_IN2全能自定義:PHPWAMP_IN2支持一鍵自定義Apache、nginx、PHP

#五年經驗程式設計師面試被要求手寫叉樹給的薪資卻是兩年程度!網友:進去擰螺絲?

現在很多公司在招聘開發崗位的時候,都會事先在招聘資訊中註明面試者應當具備的知識技能,而且在面試的過程中,有部分對於技能掌握程度有嚴格要求的公司還會要求面試者手寫程式碼,這個環節很考驗面試者的基礎功底和實力!如果能夠通過那自然是達到了面試的要求,那麼給的薪資自然不會低到那裡去。 如果有想學習jav

查詢的資料插入到另張表中分為兩種情況種是目標表不存在種是目標表存在。

         情況一(目標表不存在,建立表名為t1的表,將person表中全部資料插入): createtablet1 asselect* fromperson;情況二(目標表t1存在,將per

n個硬幣反面朝上拋m次次可以拋k枚硬幣正面朝上得概率

    題意n個硬幣反面朝上,拋m次,一次可以拋k枚硬幣,問在最優得情況下正面朝上得概率     最優的情況 每次選的k枚硬幣儘量都選反面朝上的     dp[i][j]表示 第i次拋硬幣中j個正面朝上的概率,對於拋k枚硬幣,c

Android 使用SMSSDK依賴工程初始化就崩潰的問題被坑了好久!

解決了呼叫SMSSDK初始化方法就崩潰問題! 兩年前第一次接觸SMSSDK,以依賴工程形式在用,每次呼叫初始化方法就崩潰(只有我!!其它同事執行都沒問題),當時檢查Eclipse設定,檢查jar包,檢查工程相關所有,就差給自己做個體檢!!最終無解,so,執行時只能註釋相

moment 隨機變數

http://hi.baidu.com/karashun/item/c89846f4c4b22dcb521c2679 在物理中,有力矩(moment of force)= F*L (力* 力臂) 在概率統計中,有一階矩,二階矩, 三階矩,四階矩。 不嚴格的講,這個

梯有N上樓可以步上也可以步上。編寫一個程序計算共有多少中不同的走法?

技術 告訴 不同的 mis misc 技術分享 blog main print c語言實現,小夥伴們誰要有更好的實現方法,要告訴我呦 #include int main(void) { int f,i,f1=1,f2=2; printf("請輸入樓梯數"); scanf(

梯有N上樓可以步上也可以次上(Java實現)

走樓梯問題                 組合數學和動態規劃演算法 本文嘗試對“走樓梯”問題做一個較為系統的解釋。 程式碼可以自己複製出去,除錯執行和理解! 例3:一共有10級,每次可走一步也可以走兩步.必須要8步走完10級樓梯. 問:一共有多少種走法? 分析

互補濾波互補濾波卡爾曼濾波

一階互補 // a=tau / (tau + loop time) // newAngle = angle measured with atan2 using the accelerometer //加速度感測器輸出值 // newRate = angle measured

魔方用三魔方公式時兩個特殊情況處理方式(頂面十字、最後步)

四階魔方的玩法比較簡單的,就是把他變成三階魔方,然後用三階魔方公式還原: 1、先按照面與面的對應關係,把6個面的中心4個塊拼好。因為四階魔方面與面的對應不是固定的,所以要看角塊的顏色分佈,來判斷面與面對應關係(比如一個角塊顏色是紅、綠、黃,那麼這三個顏色肯定是彼此相鄰的,不會是對立面)。還原結果

資料結構進——叉樹紅黑樹

基本定義:一個根節點下分兩個子節點的樹結構稱為二叉樹。A為根節點,B、C分別為左孩子和右孩子,E這種無孩子的結點成為葉子結點,A,B,D,G共4層。二叉樹存在的三種排序方式圖中也說明的很清晰了。 先序:根->左->右; 中序:左->根->右; 後

(03)從鍵盤輸入個數求出這個數的即 n!。

題目描述  從鍵盤輸入一個數,求出這個數的階乘,即 n!。 演算法思想 首先要清楚階乘定義,所謂 n 的階乘,就是從 1 開始乘以比前一個數大 1 的數,一直乘到 n,用公式表示就是:1×2×3×4×…×(n-2)×(n-1)×n=n! 具體

ROS進學習筆記(9)-- 關於Overlay:重名 package 在不同catkin workspace 中

要把ROS玩轉,必須把 catkin 玩轉。 http://wiki.ros.org/catkin/Tutorials 其中,Overlay問題是 重名 package 在不同catkin workspace 中時,如何處理他們的關係。 一個檢查的命令:echo $ROS