1. 程式人生 > 實用技巧 >神經網路學習筆記5

神經網路學習筆記5

C5 誤差反向傳播
計算圖
構建計算圖,從左向右進行計算。(正向傳播)

區域性計算:無論全域性發生了什麼,都只能根據與自己相關的資訊輸出接下來的結果
計算圖優點:可以將中間的計算結果全部儲存起來。只有這些無法令人信服,可以通過反向傳播高效計算倒數。

計算圖的反向傳播:沿著與正方向相反的方向,乘上區域性導數。

簡單層實現:
把構建神經網路的“層”實現為一個類
如:負責sigmoid函式的sigmoid,負責矩陣乘積的Affine,以層為單位進行實現。
因此,這裡也以層為單位進行乘法節點、加法節點

啟用函式層的實現:
RelU
y={x,(x>0);0,(x<=0)}

如果正向傳播時輸入x大於0,反向傳播會將上游的值原封不動傳給下游。如果正向傳播x的值小於0,反向傳播中傳給下游的訊號將停留在此處。

在神經網路的實現中,一般假定forward()和backward()的引數是Numpy陣列

Relu類有例項變數mask,該變數由True/False構成的Numpy陣列,會把正向傳播時的輸入x的元素中小於等於0的地方儲存為True,其他地方儲存為False。mask變數儲存了由True/False構成的Numpy陣列
如果正向傳播時輸入值小於等於0,那麼反向傳播的值為0

其作用像電路開關一樣,正向傳播時,有電的話就把開關設定為on,沒電流通過就把開關設定為off
開關為on的時候,電流直接通過,開關為off的時候沒有電流通過。

sigmoid層:
正向傳播時將輸出儲存在例項變數out中,反向傳播時使用該變數out進行計算

affine/softmax層實現:
在神經網路的正向傳播中,為了計算加權訊號的總和,使用矩陣的乘積運算
各個資料反轉的值需要彙總為偏置的元素
偏置的反向傳播會對這兩個資料的導數進行求和,使用np.sum對第零軸方向上的元素進行求和

Softmax-with-loss層:
softmax函式會將輸入的值正規化之後再輸入
輸入影象通過Affine層和Relu層進行轉換,10個輸入通過softmax層進行正則化
分幾類,輸入有幾個

神經網路的處理有推理和學習兩個階段,神經網路的推理通常不使用softmax層,一般會將最後一個Affine層的輸出作為識別結果。
神經網路中未被正則化的輸出結果有時候會被稱為得分,當神經網路的推理只需要給出一個答案的情況下,此時只對得分最大值感興趣,不需要softmax層。

但是神經網路的學習階段需要softmax層。

神經網路學習的目的:通過調整權重引數,是的神經網路的輸出接近教師標籤,必須把神經網路的輸出與教師標籤的誤差高效地傳遞給前面的 層。

反向傳播是,要將傳播的值除以批的大小,傳遞給前面的層是單個數據的誤差。

幾個層實現程式碼如下:

# coding: utf-8
import numpy as np
from common.functions import *
from common.util import im2col, col2im


class Relu:
    def __init__(self):
        self.mask = None

    def forward(self, x):
        self.mask = (x <= 0)
        out = x.copy()
        out[self.mask] = 0

        return out

    def backward(self, dout):
        dout[self.mask] = 0
        dx = dout

        return dx


class Sigmoid:
    def __init__(self):
        self.out = None

    def forward(self, x):
        out = sigmoid(x) # 1/(1+np.exp(-x))
        self.out = out
        return out

    def backward(self, dout):
        dx = dout * (1.0 - self.out) * self.out

        return dx


class Affine:
    def __init__(self, W, b):
        self.W =W
        self.b = b
        
        self.x = None
        self.original_x_shape = None
        # 權重和偏置引數的導數
        self.dW = None
        self.db = None

    def forward(self, x):
        # 對應張量
        self.original_x_shape = x.shape
        x = x.reshape(x.shape[0], -1)
        self.x = x

        out = np.dot(self.x, self.W) + self.b

        return out

    def backward(self, dout):
        dx = np.dot(dout, self.W.T)
        self.dW = np.dot(self.x.T, dout)
        self.db = np.sum(dout, axis=0)
        
        dx = dx.reshape(*self.original_x_shape)  # 還原輸入資料的形狀(對應張量)
        return dx


class SoftmaxWithLoss:
    def __init__(self):
        self.loss = None #損失
        self.y = None # softmax的輸出
        self.t = None # 監督資料

    def forward(self, x, t):
        self.t = t
        self.y = softmax(x)
        self.loss = cross_entropy_error(self.y, self.t)
        
        return self.loss

    def backward(self, dout=1):
        batch_size = self.t.shape[0]
        if self.t.size == self.y.size: # 監督資料是one-hot-vector的情況
            dx = (self.y - self.t) / batch_size
        else:
            dx = self.y.copy()
            dx[np.arange(batch_size), self.t] -= 1
            dx = dx / batch_size
        
        return dx


class Dropout:
    """
    http://arxiv.org/abs/1207.0580
    """
    def __init__(self, dropout_ratio=0.5):
        self.dropout_ratio = dropout_ratio
        self.mask = None

    def forward(self, x, train_flg=True):
        if train_flg:
            self.mask = np.random.rand(*x.shape) > self.dropout_ratio
            return x * self.mask
        else:
            return x * (1.0 - self.dropout_ratio)

    def backward(self, dout):
        return dout * self.mask


class BatchNormalization:
    """
    http://arxiv.org/abs/1502.03167
    """
    def __init__(self, gamma, beta, momentum=0.9, running_mean=None, running_var=None):
        self.gamma = gamma
        self.beta = beta
        self.momentum = momentum
        self.input_shape = None # Conv層的情況下為4維,全連線層的情況下為2維  

        # 測試時使用的平均值和方差
        self.running_mean = running_mean
        self.running_var = running_var  
        
        # backward時使用的中間資料
        self.batch_size = None
        self.xc = None
        self.std = None
        self.dgamma = None
        self.dbeta = None

    def forward(self, x, train_flg=True):
        self.input_shape = x.shape
        if x.ndim != 2:
            N, C, H, W = x.shape
            x = x.reshape(N, -1)

        out = self.__forward(x, train_flg)
        
        return out.reshape(*self.input_shape)
            
    def __forward(self, x, train_flg):
        if self.running_mean is None:
            N, D = x.shape
            self.running_mean = np.zeros(D)
            self.running_var = np.zeros(D)
                        
        if train_flg:
            mu = x.mean(axis=0)
            xc = x - mu
            var = np.mean(xc**2, axis=0)
            std = np.sqrt(var + 10e-7)
            xn = xc / std
            
            self.batch_size = x.shape[0]
            self.xc = xc
            self.xn = xn
            self.std = std
            self.running_mean = self.momentum * self.running_mean + (1-self.momentum) * mu
            self.running_var = self.momentum * self.running_var + (1-self.momentum) * var            
        else:
            xc = x - self.running_mean
            xn = xc / ((np.sqrt(self.running_var + 10e-7)))
            
        out = self.gamma * xn + self.beta 
        return out

    def backward(self, dout):
        if dout.ndim != 2:
            N, C, H, W = dout.shape
            dout = dout.reshape(N, -1)

        dx = self.__backward(dout)

        dx = dx.reshape(*self.input_shape)
        return dx

    def __backward(self, dout):
        dbeta = dout.sum(axis=0)
        dgamma = np.sum(self.xn * dout, axis=0)
        dxn = self.gamma * dout
        dxc = dxn / self.std
        dstd = -np.sum((dxn * self.xc) / (self.std * self.std), axis=0)
        dvar = 0.5 * dstd / self.std
        dxc += (2.0 / self.batch_size) * self.xc * dvar
        dmu = np.sum(dxc, axis=0)
        dx = dxc - dmu / self.batch_size
        
        self.dgamma = dgamma
        self.dbeta = dbeta
        
        return dx


class Convolution:
    def __init__(self, W, b, stride=1, pad=0):
        self.W = W
        self.b = b
        self.stride = stride
        self.pad = pad
        
        # 中間資料(backward時使用)
        self.x = None   
        self.col = None
        self.col_W = None
        
        # 權重和偏置引數的梯度
        self.dW = None
        self.db = None

    def forward(self, x):
        FN, C, FH, FW = self.W.shape
        N, C, H, W = x.shape
        out_h = 1 + int((H + 2*self.pad - FH) / self.stride)
        out_w = 1 + int((W + 2*self.pad - FW) / self.stride)

        col = im2col(x, FH, FW, self.stride, self.pad)
        col_W = self.W.reshape(FN, -1).T

        out = np.dot(col, col_W) + self.b
        out = out.reshape(N, out_h, out_w, -1).transpose(0, 3, 1, 2)

        self.x = x
        self.col = col
        self.col_W = col_W

        return out

    def backward(self, dout):
        FN, C, FH, FW = self.W.shape
        dout = dout.transpose(0,2,3,1).reshape(-1, FN)

        self.db = np.sum(dout, axis=0)
        self.dW = np.dot(self.col.T, dout)
        self.dW = self.dW.transpose(1, 0).reshape(FN, C, FH, FW)

        dcol = np.dot(dout, self.col_W.T)
        dx = col2im(dcol, self.x.shape, FH, FW, self.stride, self.pad)

        return dx


class Pooling:
    def __init__(self, pool_h, pool_w, stride=1, pad=0):
        self.pool_h = pool_h
        self.pool_w = pool_w
        self.stride = stride
        self.pad = pad
        
        self.x = None
        self.arg_max = None

    def forward(self, x):
        N, C, H, W = x.shape
        out_h = int(1 + (H - self.pool_h) / self.stride)
        out_w = int(1 + (W - self.pool_w) / self.stride)

        col = im2col(x, self.pool_h, self.pool_w, self.stride, self.pad)
        col = col.reshape(-1, self.pool_h*self.pool_w)

        arg_max = np.argmax(col, axis=1)
        out = np.max(col, axis=1)
        out = out.reshape(N, out_h, out_w, C).transpose(0, 3, 1, 2)

        self.x = x
        self.arg_max = arg_max

        return out

    def backward(self, dout):
        dout = dout.transpose(0, 2, 3, 1)
        
        pool_size = self.pool_h * self.pool_w
        dmax = np.zeros((dout.size, pool_size))
        dmax[np.arange(self.arg_max.size), self.arg_max.flatten()] = dout.flatten()
        dmax = dmax.reshape(dout.shape + (pool_size,)) 
        
        dcol = dmax.reshape(dmax.shape[0] * dmax.shape[1] * dmax.shape[2], -1)
        dx = col2im(dcol, self.x.shape, self.pool_h, self.pool_w, self.stride, self.pad)
        
        return dx