1. 程式人生 > >從FrameCallback理解Choreographer原理及簡單幀率監控應用

從FrameCallback理解Choreographer原理及簡單幀率監控應用

簡單來說,Choreographer主要作用是協調動畫,輸入和繪製的時間,它從顯示子系統接收定時脈衝(例如垂直同步),然後安排渲染下一個frame的一部分工作。

自定義FrameCallback

FrameCallback是和Choreographer互動,在下一個frame被渲染時觸發的介面類。開發者可以設定自己的FrameCallback。我們就從自定義FrameCallback作為切入口,嘗試窺探一下Choreographer的實現原理。簡單實現如下:


   private static final String TAG = "Choreographer_test";

    @Override
public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); final ImageView imageView= (ImageView) findViewById(R.id.iv_anim); imageView.setOnClickListener(new View.OnClickListener() { @Override
public void onClick(View v) { final long starTime=System.nanoTime(); Choreographer.getInstance().postFrameCallback(new Choreographer.FrameCallback() { @Override public void doFrame(long frameTimeNanos) { Log.e(TAG,"starTime="
+starTime+", frameTimeNanos="+frameTimeNanos+", frameDueTime="+(frameTimeNanos-starTime)/1000000); } }); } }); }

在這裡,我們自定義的FrameCallback只是簡單把時間列印了一下。輸出如下資訊:

E/Choreographer_test: starTime=232157742945242, frameTimeNanos=232157744964255, frameDueTime=2

從log可以看出,這一幀大概2ms就處理完畢。下面我們從原始碼角度窺探一下它具體的實現原理。

實現原理

1. 關鍵成員變數

建構函式

   private Choreographer(Looper looper) {
        mLooper = looper;
        //1.建立Handler物件,用於處理訊息
        mHandler = new FrameHandler(looper);
        //2.建立接收VSYNC訊號的物件
        mDisplayEventReceiver = USE_VSYNC ? new FrameDisplayEventReceiver(looper) : null;
        //3.初始化上一次frame渲染的時間點
        mLastFrameTimeNanos = Long.MIN_VALUE;
        //4.幀率,也就是渲染一幀的時間,getRefreshRate是重新整理率,一般是60
        mFrameIntervalNanos = (long)(1000000000 / getRefreshRate());
        //5.建立回撥佇列
        mCallbackQueues = new CallbackQueue[CALLBACK_LAST + 1];
        for (int i = 0; i <= CALLBACK_LAST; i++) {
            mCallbackQueues[i] = new CallbackQueue();
        }
    }

FrameHandler

 private final class FrameHandler extends Handler {
        public FrameHandler(Looper looper) {
            super(looper);
        }

        @Override
        public void handleMessage(Message msg) {
            switch (msg.what) {
                case MSG_DO_FRAME:
                    //渲染下一個frame
                    doFrame(System.nanoTime(), 0);
                    break;
                case MSG_DO_SCHEDULE_VSYNC:
                    //請求VSNYC訊號
                    doScheduleVsync();
                    break;
                case MSG_DO_SCHEDULE_CALLBACK:
                    //執行Callback
                    doScheduleCallback(msg.arg1);
                    break;
            }
        }
    }

FrameDisplayEventReceiver

FrameDisplayEventReceiver是DisplayEventReceiver的子類,DisplayEventReceiver是接收VSYNC資訊的java層實現。


public abstract class DisplayEventReceiver {
    public void onVsync(long timestampNanos, int builtInDisplayId, int frame) {}
    public void scheduleVsync() {
        if (mReceiverPtr == 0) {
            Log.w(TAG, "Attempted to schedule a vertical sync pulse but the display event "
                    + "receiver has already been disposed.");
        } else {
            nativeScheduleVsync(mReceiverPtr);
        }
    }
    private void dispatchVsync(long timestampNanos, int builtInDisplayId, int frame) {
        onVsync(timestampNanos, builtInDisplayId, frame);
    }
}

VSYNC資訊一般由硬體中斷產生,SurfaceFlinger處理。具體實現和監聽機制可以參考連結scheduleVsync方法用於請求VSNYC訊號, Native方法接收到VSYNC資訊處理後會呼叫java層dispatchVsync方法,最終呼叫到FrameDisplayEventReceiver的onVsync方法,具體實現我們一會再說。

CallbackQueue

CallbackQueue是個單鏈表實現,每種型別的callback(CallbackRecord)按照設定的執行時間(dueTime)順序排序分別儲存在其各自CallbackQueue。在Choreographer中有四種類型callback:Input、Animation、Draw,還有一種是用來解決動畫啟動問題的。

private final class CallbackQueue {
        private CallbackRecord mHead;

        public boolean hasDueCallbacksLocked(long now) {
            return mHead != null && mHead.dueTime <= now;
        }
        //根據當前時間得到callback
        public CallbackRecord extractDueCallbacksLocked(long now) {
              ....
              ....
        }
        //根據時間新增callback
        public void addCallbackLocked(long dueTime, Object action, Object token) {
            ....
            ....
        }
        //移除callback
        public void removeCallbacksLocked(Object action, Object token) {
                 ....
                 ....
            }
        }
    }

2. 流程分析

大致分析完Choreographer關鍵的幾個成員變數後,我們再回到postFrameCallback方法

    public void postFrameCallbackDelayed(FrameCallback callback, long delayMillis) {
        if (callback == null) {
            throw new IllegalArgumentException("callback must not be null");
        }
        //預設為CALLBACK_ANIMATION型別
        postCallbackDelayedInternal(CALLBACK_ANIMATION,
                callback, FRAME_CALLBACK_TOKEN, delayMillis);
    }

postCallbackDelayedInternal

private void postCallbackDelayedInternal(int callbackType,
            Object action, Object token, long delayMillis) {
        synchronized (mLock) {
            final long now = SystemClock.uptimeMillis();
            final long dueTime = now + delayMillis;
            //新增callback到回撥佇列
            mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token);
            if (dueTime <= now) {
                scheduleFrameLocked(now);
            } else {
                //設定的執行時間在當前時間之後,傳送MSG_DO_SCHEDULE_CALLBACK,由FrameHanlder安排執行scheduleFrameLocked
                Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_CALLBACK, action);
                msg.arg1 = callbackType;
                msg.setAsynchronous(true);
                mHandler.sendMessageAtTime(msg, dueTime);`
            }
        }
    }

scheduleFrameLocked

 private void scheduleFrameLocked(long now) {
            ....
              if (isRunningOnLooperThreadLocked()) {
                //若當前執行緒是UI執行緒,執行scheduleVsyncLocked請求VSYNC訊號
                scheduleVsyncLocked();
              } else {
                //非UI執行緒,傳送MSG_DO_SCHEDULE_VSYNC訊息到主執行緒
                Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_VSYNC);
                msg.setAsynchronous(true);
                mHandler.sendMessageAtFrontOfQueue(msg);
              }
             ....
    }

scheduleVsyncLocked最終呼叫FrameDisplayEventReceiver#scheduleVsync,收到Vsync資訊後,呼叫FrameDisplayEventReceiver#onVsync

FrameDisplayEventReceiver#onVsync

   private final class FrameDisplayEventReceiver extends DisplayEventReceiver
            implements Runnable {
        private boolean mHavePendingVsync;
        private long mTimestampNanos;
        private int mFrame;

        public FrameDisplayEventReceiver(Looper looper) {
            super(looper);
        }

        @Override
        public void onVsync(long timestampNanos, int builtInDisplayId, int frame) {
            ....
            ....
            mTimestampNanos = timestampNanos;
            mFrame = frame;
            //該訊息的callback為當前物件FrameDisplayEventReceiver,收到訊息呼叫其run方法,然後呼叫doFrame方法
            Message msg = Message.obtain(mHandler, this);
            msg.setAsynchronous(true);
            mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS);
        }

        @Override
        public void run() {
            mHavePendingVsync = false;
            doFrame(mTimestampNanos, mFrame);
        }
    }

doFrame

    void doFrame(long frameTimeNanos, int frame) {
            ....
            //Vsync訊號到來時間    
            long intendedFrameTimeNanos = frameTimeNanos;
            //實際開始執行當前frame的時間
            startNanos = System.nanoTime();
            //時間差
            final long jitterNanos = startNanos - frameTimeNanos;
            //時間差大於幀率,則認為是跳幀
            if (jitterNanos >= mFrameIntervalNanos) {
                final long skippedFrames = jitterNanos / mFrameIntervalNanos;
                if (skippedFrames >= SKIPPED_FRAME_WARNING_LIMIT) {
                    Log.i(TAG, "Skipped " + skippedFrames + " frames!  "
                            + "The application may be doing too much work on its main thread.");
                }
              ....
              ....
             //記錄當前frame資訊   
            mFrameInfo.setVsync(intendedFrameTimeNanos, frameTimeNanos);
            mFrameScheduled = false;
              //記錄上一次frame渲染的時間點
            mLastFrameTimeNanos = frameTimeNanos;
        }

        try {
            //執行CallBack,優先順序為:CALLBACK_INPUT>CALLBACK_ANIMATION>CALLBACK_TRAVERSAL>CALLBACK_COMMIT
            Trace.traceBegin(Trace.TRACE_TAG_VIEW, "Choreographer#doFrame");
            mFrameInfo.markInputHandlingStart();
            doCallbacks(Choreographer.CALLBACK_INPUT, frameTimeNanos);
            mFrameInfo.markAnimationsStart();
            doCallbacks(Choreographer.CALLBACK_ANIMATION, frameTimeNanos);
            mFrameInfo.markPerformTraversalsStart();
            doCallbacks(Choreographer.CALLBACK_TRAVERSAL, frameTimeNanos);
            doCallbacks(Choreographer.CALLBACK_COMMIT, frameTimeNanos);
        } finally {
            Trace.traceEnd(Trace.TRACE_TAG_VIEW);
        }
        ....
    }

doCallbacks

    void doCallbacks(int callbackType, long frameTimeNanos) {
        CallbackRecord callbacks;
        synchronized (mLock) {
            final long now = System.nanoTime();
            // 從佇列查詢相應型別的CallbackRecord物件
            callbacks = mCallbackQueues[callbackType].extractDueCallbacksLocked(
                    now / TimeUtils.NANOS_PER_MS);
            if (callbacks == null) {
                return;
            }
            mCallbacksRunning = true;
          ....
          ....  
        try {
            Trace.traceBegin(Trace.TRACE_TAG_VIEW, CALLBACK_TRACE_TITLES[callbackType]);
            for (CallbackRecord c = callbacks; c != null; c = c.next) {
                ....
                //呼叫CallbackRecord的run方法
                c.run(frameTimeNanos);
            }
        } finally {
            synchronized (mLock) {
                mCallbacksRunning = false;
                //回收callbacks,加入mCallbackPool物件池
                do {
                    final CallbackRecord next = callbacks.next;
                    recycleCallbackLocked(callbacks);
                    callbacks = next;
                } while (callbacks != null);
            }
            Trace.traceEnd(Trace.TRACE_TAG_VIEW);
        }
    }

CallbackRecord#run

 public void run(long frameTimeNanos) {
   if (token == FRAME_CALLBACK_TOKEN) {
      //呼叫自定義FrameCallback的doFrame方法
     ((FrameCallback)action).doFrame(frameTimeNanos);
   } else {
     ((Runnable)action).run();
   }
}

至此,關於Choreographer的整個呼叫流程及其原理已經分析完成。至於系統某些呼叫,如View的invalidate,觸發ViewRootImpl#scheduleTraversals,最終呼叫
Choreographer#postCallback(Choreographer.CALLBACK_TRAVERSAL,mTraversalRunnable, null);,只是明確了Callbac的型別以及回撥處理Runnable而已,基本流程和自定義FrameCallback一樣。

總結

  • 儘量避免在執行動畫或渲染操作之後在主執行緒執行操作,在之前或之後都應該儘量避免傳送訊息到主執行緒looper

  • 既然自定義FrameCallback可以在下一個frame被渲染的時候會被回撥,那我們是不是可以根據這個原理實現應用的幀率監聽呢,答案是肯定的,下面是我的簡單實現:

1.自定義FrameCallback:FPSFrameCallback

    public class FPSFrameCallback implements Choreographer.FrameCallback {

      private static final String TAG = "FPS_TEST";
      private long mLastFrameTimeNanos = 0;
      private long mFrameIntervalNanos;

      public FPSFrameCallback(long lastFrameTimeNanos) {
          mLastFrameTimeNanos = lastFrameTimeNanos;
          mFrameIntervalNanos = (long)(1000000000 / 60.0);
      }

      @Override
      public void doFrame(long frameTimeNanos) {

          //初始化時間
          if (mLastFrameTimeNanos == 0) {
              mLastFrameTimeNanos = frameTimeNanos;
          }
          final long jitterNanos = frameTimeNanos - mLastFrameTimeNanos;
          if (jitterNanos >= mFrameIntervalNanos) {
              final long skippedFrames = jitterNanos / mFrameIntervalNanos;
              if(skippedFrames>30){
                  Log.i(TAG, "Skipped " + skippedFrames + " frames!  "
                          + "The application may be doing too much work on its main thread.");
              }
          }
          mLastFrameTimeNanos=frameTimeNanos;
          //註冊下一幀回撥
          Choreographer.getInstance().postFrameCallback(this);
      }
  }

2.在Application中註冊

      @Override
         public void onCreate() {
             super.onCreate();
             Choreographer.getInstance().postFrameCallback(new FPSFrameCallback(System.nanoTime()));
         }

3.測試


     public class MainActivity extends FragmentActivity {

         @Override
         public void onCreate(Bundle savedInstanceState) {
             super.onCreate(savedInstanceState);
             setContentView(R.layout.activity_main);

         }

         @Override
         protected void onResume() {
             super.onResume();
             try {
                 Thread.sleep(1000);
             } catch (InterruptedException e) {
                 e.printStackTrace();
             }
         }
     }

LOG輸出如下:


     I/Choreographer: Skipped 64 frames!  The application may be doing too much work on its main thread.
     I/FPS_TEST: Skipped 65 frames!  The application may be doing too much work on its main thread.

基本和系統監控數值一致