1. 程式人生 > >Linux 線程同步的三種方法(互斥鎖、條件變量、信號量)

Linux 線程同步的三種方法(互斥鎖、條件變量、信號量)

另一個 雙向 fin lee ces 僅支持 lin from str

互斥鎖

 1 #include <cstdio>
 2 
 3 #include <cstdlib>
 4 
 5 #include <unistd.h>
 6 
 7 #include <pthread.h>
 8 
 9 #include "iostream"
10 
11 using namespace std;
12 
13 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
14 
15 int tmp;
16 
17 void* thread(void *arg)
18 
19 {
20 21 cout << "thread id is " << pthread_self() << endl; 22 23 pthread_mutex_lock(&mutex); 24 25 tmp = 12; 26 27 cout << "Now a is " << tmp << endl; 28 29 pthread_mutex_unlock(&mutex); 30 31 return NULL; 32 33 } 34 35 int main()
36 37 { 38 39 pthread_t id; 40 41 cout << "main thread id is " << pthread_self() << endl; 42 43 tmp = 3; 44 45 cout << "In main func tmp = " << tmp << endl; 46 47 if (!pthread_create(&id, NULL, thread, NULL)) 48 49 { 50 51 cout << "
Create thread success!" << endl; 52 53 } 54 55 else 56 57 { 58 59 cout << "Create thread failed!" << endl; 60 61 } 62 63 pthread_join(id, NULL); 64 65 pthread_mutex_destroy(&mutex); 66 67 return 0; 68 69 } 70 71 //編譯:g++ -o thread testthread.cpp -lpthread

條件變量

#include <stdio.h>

#include <pthread.h>

#include "stdlib.h"

#include "unistd.h"

pthread_mutex_t mutex;

pthread_cond_t cond;

void hander(void *arg)

{

    free(arg);

    (void)pthread_mutex_unlock(&mutex);

}

void *thread1(void *arg)

{

    pthread_cleanup_push(hander, &mutex);

    while(1)

    {

        printf("thread1 is running\n");

        pthread_mutex_lock(&mutex);

        pthread_cond_wait(&cond, &mutex);

        printf("thread1 applied the condition\n");

        pthread_mutex_unlock(&mutex);

        sleep(4);

    }

    pthread_cleanup_pop(0);

}

void *thread2(void *arg)

{

    while(1)

    {

        printf("thread2 is running\n");

        pthread_mutex_lock(&mutex);

        pthread_cond_wait(&cond, &mutex);

        printf("thread2 applied the condition\n");

        pthread_mutex_unlock(&mutex);

        sleep(1);

    }

}

int main()

{

    pthread_t thid1,thid2;

    printf("condition variable study!\n");

    pthread_mutex_init(&mutex, NULL);

    pthread_cond_init(&cond, NULL);

    pthread_create(&thid1, NULL, thread1, NULL);

    pthread_create(&thid2, NULL, thread2, NULL);

    sleep(1);

    do

    {

        pthread_cond_signal(&cond);

    }while(1);

    sleep(20);

    pthread_exit(0);

    return 0;

}
#include <pthread.h>

#include <unistd.h>

#include "stdio.h"

#include "stdlib.h"

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

struct node

{

    int n_number;

    struct node *n_next;

}*head = NULL;

 

static void cleanup_handler(void *arg)

{

    printf("Cleanup handler of second thread./n");

    free(arg);

    (void)pthread_mutex_unlock(&mtx);

}

static void *thread_func(void *arg)

{

    struct node *p = NULL;

    pthread_cleanup_push(cleanup_handler, p);

    while (1)

    {

        //這個mutex主要是用來保證pthread_cond_wait的並發性

        pthread_mutex_lock(&mtx);

        while (head == NULL)

        {

            //這個while要特別說明一下,單個pthread_cond_wait功能很完善,為何

            //這裏要有一個while (head == NULL)呢?因為pthread_cond_wait裏的線

            //程可能會被意外喚醒,如果這個時候head != NULL,則不是我們想要的情況。

            //這個時候,應該讓線程繼續進入pthread_cond_wait

            // pthread_cond_wait會先解除之前的pthread_mutex_lock鎖定的mtx,

            //然後阻塞在等待對列裏休眠,直到再次被喚醒(大多數情況下是等待的條件成立

            //而被喚醒,喚醒後,該進程會先鎖定先pthread_mutex_lock(&mtx);,再讀取資源

            //用這個流程是比較清楚的

            pthread_cond_wait(&cond, &mtx);

            p = head;

            head = head->n_next;

            printf("Got %d from front of queue/n", p->n_number);

            free(p);

        }

        pthread_mutex_unlock(&mtx); //臨界區數據操作完畢,釋放互斥鎖

    }

    pthread_cleanup_pop(0);

    return 0;

}

int main(void)

{

    pthread_t tid;

    int i;

    struct node *p;

    //子線程會一直等待資源,類似生產者和消費者,但是這裏的消費者可以是多個消費者,而

    //不僅僅支持普通的單個消費者,這個模型雖然簡單,但是很強大

    pthread_create(&tid, NULL, thread_func, NULL);

    sleep(1);

    for (i = 0; i < 10; i++)

    {

        p = (struct node*)malloc(sizeof(struct node));

        p->n_number = i;

        pthread_mutex_lock(&mtx); //需要操作head這個臨界資源,先加鎖,

        p->n_next = head;

        head = p;

        pthread_cond_signal(&cond);

        pthread_mutex_unlock(&mtx); //解鎖

        sleep(1);

    }

    printf("thread 1 wanna end the line.So cancel thread 2./n");

    //關於pthread_cancel,有一點額外的說明,它是從外部終止子線程,子線程會在最近的取消點,退出

    //線程,而在我們的代碼裏,最近的取消點肯定就是pthread_cond_wait()了。

    pthread_cancel(tid);

    pthread_join(tid, NULL);

    printf("All done -- exiting/n");

    return 0;

}

信號量

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <pthread.h>

#include <semaphore.h>

#include <errno.h>

#define return_if_fail(p) if((p) == 0){printf ("[%s]:func error!/n", __func__);return;}

typedef struct _PrivInfo

{

    sem_t s1;

    sem_t s2;

    time_t end_time;

}PrivInfo;

 

static void info_init (PrivInfo* thiz);

static void info_destroy (PrivInfo* thiz);

static void* pthread_func_1 (PrivInfo* thiz);

static void* pthread_func_2 (PrivInfo* thiz);

 

int main (int argc, char** argv)

{

    pthread_t pt_1 = 0;

    pthread_t pt_2 = 0;

    int ret = 0;

    PrivInfo* thiz = NULL;

    thiz = (PrivInfo* )malloc (sizeof (PrivInfo));

    if (thiz == NULL)

    {

        printf ("[%s]: Failed to malloc priv./n");

        return -1;

    }

    info_init (thiz);

    ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, thiz);

    if (ret != 0)

    {

        perror ("pthread_1_create:");

    }

    ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, thiz);

    if (ret != 0)

    {

        perror ("pthread_2_create:");

    }

    pthread_join (pt_1, NULL);

    pthread_join (pt_2, NULL);

    info_destroy (thiz);

    return 0;

}

static void info_init (PrivInfo* thiz)

{

    return_if_fail (thiz != NULL);

    thiz->end_time = time(NULL) + 10;

    sem_init (&thiz->s1, 0, 1);

    sem_init (&thiz->s2, 0, 0);

    return;

}

static void info_destroy (PrivInfo* thiz)

{

    return_if_fail (thiz != NULL);

    sem_destroy (&thiz->s1);

    sem_destroy (&thiz->s2);

    free (thiz);

    thiz = NULL;

    return;

}

static void* pthread_func_1 (PrivInfo* thiz)

{

    return_if_fail(thiz != NULL);

    while (time(NULL) < thiz->end_time)

    {

        sem_wait (&thiz->s2);

        printf ("pthread1: pthread1 get the lock./n");

        sem_post (&thiz->s1);

        printf ("pthread1: pthread1 unlock/n");

        sleep (1);

    }

    return;

}

static void* pthread_func_2 (PrivInfo* thiz)

{

    return_if_fail (thiz != NULL);

    while (time (NULL) < thiz->end_time)

    {

        sem_wait (&thiz->s1);

        printf ("pthread2: pthread2 get the unlock./n");

        sem_post (&thiz->s2);

        printf ("pthread2: pthread2 unlock./n");

        sleep (1);

    }

    return;

}

總結:

互斥鎖是是訪問共享變量的,防止多線程同時寫出現臟數據。

信號量是用來線程同步的,可兩線程雙向互相通知,也可單向通知。

條件變量是信號量的一種封裝,用於線程單向等待另一個線程的通知,也可先後多個線程等待同一個條件變量的喚醒。

參考資料:https://blog.csdn.net/zsf8701/article/details/7844316

Linux 線程同步的三種方法(互斥鎖、條件變量、信號量)