1. 程式人生 > >Flody演算法(有權多源最短路徑問題)

Flody演算法(有權多源最短路徑問題)

多源最短路徑問題,即為求每一對頂點之間的最短路徑問題

  • 演算法描述

    • 演算法思想原理:
      • Floyd演算法是一個經典的動態規劃演算法。用通俗的語言來描述的話,首先我們的目標是尋找從點i到點j的最短路徑。從動態規劃的角度看問題,我們需要為這個目標重新做一個詮釋(這個詮釋正是動態規劃最富創造力的精華所在)
      • 從任意節點i到任意節點j的最短路徑不外乎2種可能,1是直接從i到j,2是從i經過若干個節點k到j。所以,我們假設Dis(i,j)為節點u到節點v的最短路徑的距離,對於每一個節點k,我們檢查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,證明從i到k再到j的路徑比i直接到j的路徑短,我們便設定Dis(i,j) = Dis(i,k) + Dis(k,j),這樣一來,當我們遍歷完所有節點k,Dis(i,j)中記錄的便是i到j的最短路徑的距離。
    • 演算法描述:
      • a.從任意一條單邊路徑開始。所有兩點之間的距離是邊的權,如果兩點之間沒有邊相連,則權為無窮大。
      • b.對於每一對頂點 u 和 v,看看是否存在一個頂點 w 使得從 u 到 w 再到 v 比己知的路徑更短。如果是更新它。

  • 演算法複雜度:

    在這裡插入圖片描述

  • 演算法程式碼片段

/* 鄰接矩陣儲存 - 多源最短路演算法 */
 
bool Floyd( MGraph Graph, WeightType D[][MaxVertexNum], Vertex path[
][MaxVertexNum] ) { Vertex i, j, k; /* 初始化 */ for ( i=0; i<Graph->Nv; i++ ) for( j=0; j<Graph->Nv; j++ ) { D[i][j] = Graph->G[i][j]; path[i][j] = -1; } for( k=0; k<Graph->Nv; k++ ) for( i=0; i<Graph->Nv; i++ ) for
( j=0; j<Graph->Nv; j++ ) if( D[i][k] + D[k][j] < D[i][j] ) { D[i][j] = D[i][k] + D[k][j]; if ( i==j && D[i][j]<0 ) /* 若發現負值圈 */ return false; /* 不能正確解決,返回錯誤標記 */ path[i][j] = k; } return true; /* 演算法執行完畢,返回正確標記 */ }

Reference