1. 程式人生 > >支援向量機(Python實現)

支援向量機(Python實現)

這篇文章是《機器學習實戰》(Machine Learning in Action)第六章 支援向量機演算法的Python實現程式碼。


1 參考連結

(1)支援向量機通俗導論(理解SVM的三層境界)
(2)支援向量機—SMO論文詳解(序列最小最優化演算法)

2 實現程式碼

from numpy import *

def loadDataSet(filename):
    dataMat = []; labelMat = []
    fr = open(filename)
    for line in fr.readlines():
        lineArr = line.strip().split('\t'
) dataMat.append([float(lineArr[0]), float(lineArr[1])]) labelMat.append(float(lineArr[2])) return dataMat, labelMat def selectJrand(i,m): j=i while (j==i): j = int(random.uniform(0,m)) return j def clipAlpha(aj, H, L): if aj > H: aj = H if L > aj: aj = L return
aj def smoSimple(dataMatIn, classLabels, C, toler, maxIter): dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose() b = 0; m, n = shape(dataMatrix) alphas = mat(zeros((m,1))) iter = 0 while (iter < maxIter): alphaPairsChanged = 0 for i in range(m): fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b Ei = fXi - float(labelMat[i]) if
((labelMat[i]*Ei < -toler) and (alphas[i]<C)) or ((labelMat[i]*Ei > toler) and (alphas[i]>0)): j = selectJrand(i,m) fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b Ej = fXj -float(labelMat[j]) alphaIold = alphas[i].copy() alphaJold = alphas[j].copy() if (labelMat[i] != labelMat[j]): L = max(0, alphas[j] - alphas[i]) H = min(C, C + alphas[j] - alphas[i]) else: L = max(0, alphas[j] + alphas[i] - C) H = min(C, alphas[j] + alphas[i]) if L == H: print "L==H"; continue eta = 2.0*dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T if eta >= 0: print "eta>=0"; continue alphas[j] -= labelMat[j]*(Ei-Ej)/eta alphas[j] = clipAlpha(alphas[j], H, L) if (abs(alphas[j]-alphaJold) < 0.0001): print "j not moving enough" continue alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j]) b1 = b - Ei - labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - \ labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T b2 = b - Ej - labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T -\ labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T if (0 < alphas[i]) and (C > alphas[i]): b = b1 elif (0 < alphas[j]) and (C > alphas[j]): b = b2 else: b = (b1 + b2) / 2.0 alphaPairsChanged += 1 print "iter: %d i: %d, pairs changed %d" % (iter, i, alphaPairsChanged) if alphaPairsChanged == 0: iter += 1 else: iter = 0 print "iteration number: %d" % iter return b, alphas def kernelTrans(X, A, kTup): m,n = shape(X) K = mat(zeros((m,1))) if kTup[0]=='lin': K=X*A.T elif kTup[0]=='rbf': for j in range(m): deltaRow = X[j,:]-A K[j] = deltaRow*deltaRow.T K = exp(K/(-1*kTup[1]**2)) else: raise NameError('Houston We Have a Problem -- That Kernal is not recognized.') return K #class optStruct: # def __init__(self,dataMatIn, classLabels, C, toler, kTup): # self.X = dataMatIn # self.labelMat = classLabels # self.C = C # self.tol = toler # self.m = shape(dataMatIn)[0] # self.alphas = mat(zeros((self.m,1))) # self.b = 0 # self.eCache = mat(zeros((self.m,2))) # self.K = mat(zeros((self.m, self.m))) # for i in range(self.m): # self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup) class optStruct: def __init__(self,dataMatIn, classLabels, C, toler, kTup): # Initialize the structure with the parameters self.X = dataMatIn self.labelMat = classLabels self.C = C self.tol = toler self.m = shape(dataMatIn)[0] self.alphas = mat(zeros((self.m,1))) self.b = 0 self.eCache = mat(zeros((self.m,2))) #first column is valid flag self.K = mat(zeros((self.m,self.m))) for i in range(self.m): self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup) def calcEk(oS, k): fXk = float(multiply(oS.alphas, oS.labelMat).T*oS.K[:,k] + oS.b) Ek = fXk - float(oS.labelMat[k]) return Ek def selectJ(i, oS, Ei): maxK = -1; maxDeltaE = 0; Ej = 0 oS.eCache[i] = [1, Ei] validEcacheList = nonzero(oS.eCache[:,0].A)[0] if (len(validEcacheList)) > 1: for k in validEcacheList: if k ==i: continue Ek = calcEk(oS, k) deltaE = abs(Ei - Ek) if (deltaE > maxDeltaE): maxK = k; maxDeltaE = deltaE; Ej = Ek return maxK, Ej else: j = selectJrand(i, oS.m) Ej = calcEk(oS, j) return j,Ej def updateEk(oS, k): Ek = calcEk(oS, k) oS.eCache[k] = [1, Ek] def innerL(i, oS): Ei = calcEk(oS, i) if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or \ ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)): j, Ej = selectJ(i, oS, Ei) alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy() if (oS.labelMat[i] != oS.labelMat[j]): L = max(0, oS.alphas[j] - oS.alphas[i]) H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i]) else: L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C) H = min(oS.C, oS.alphas[j] + oS.alphas[i]) if L == H: print "L==H"; return 0 eta = 2.0*oS.K[i,j] - oS.K[i,i] - oS.K[j,j] if eta >= 0: print "eta>=0"; return 0 oS.alphas[j] -= oS.labelMat[j]*(Ei-Ej)/eta oS.alphas[j] = clipAlpha(oS.alphas[j], H, L) updateEk(oS,j) if (abs(oS.alphas[j]-alphaJold) < 0.0001): print "j not moving enough"; return 0 oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j]) updateEk(oS,i) b1 = oS.b - Ei - oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - \ oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j] b2 = oS.b - Ej - oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j] -\ oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j] if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1 elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2 else: oS.b = (b1 + b2) / 2.0 return 1 else: return 0 def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup=('lin',0)): oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler,kTup) iter = 0 entireSet = True; alphaPairsChanged = 0 while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)): alphaPairsChanged = 0 if entireSet: for i in range(oS.m): alphaPairsChanged += innerL(i, oS) print "fullSet, iter: %d i: %d, pairs changed %d" %(iter,i, alphaPairsChanged) iter += 1 else: nonBoundsIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0] for i in nonBoundsIs: alphaPairsChanged += innerL(i, oS) print "non-bound, iter: %d i: %d, pairs changed %d" % (iter, i, alphaPairsChanged) iter += 1 if entireSet: entireSet = False elif (alphaPairsChanged == 0): entireSet = True print "iteration number: %d" % iter return oS.b, oS.alphas def calcWs(alphas, dataArr, classLabels): X = mat(dataArr); labelMat = mat(classLabels).transpose() m,n = shape(X) w = zeros((n,1)) for i in range(m): w += multiply(alphas[i]*labelMat[i],X[i,:].T) return w def plot(dataArr, labelArr, sVs): import matplotlib.pyplot as plt m = shape(dataArr)[0] xcord1 = []; ycord1 = [] xcord2 = []; ycord2 = [] for i in range(m): if int(labelArr[i]) == 1: xcord1.append(dataArr[i,0]); ycord1.append(dataArr[i,1]); else: xcord2.append(dataArr[i,0]); ycord2.append(dataArr[i,1]); fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(xcord1, ycord1, s=50, c='red', marker='s') ax.scatter(xcord2, ycord2, s=50, c='green') ax.scatter(sVs[:,0], sVs[:,1], s=100, c='blue', marker='+') plt.xlabel('X1'); plt.ylabel('X2') plt.show() def testRbf(k1=1.3): # training dataArr, labelArr = loadDataSet('testSetRBF.txt') b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) dataMat = mat(dataArr); labelMat = mat(labelArr).transpose() svInd = nonzero(alphas.A>0)[0] sVs = dataMat[svInd] labelSV = labelMat[svInd] print "there are %d Support Vectors" % shape(sVs)[0] # test self m,n = shape(dataMat) errorCount = 0 for i in range(m): kernelEval = kernelTrans(sVs, dataMat[i,:],('rbf',k1)) predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b if sign(predict) != sign(labelArr[i]): errorCount += 1 print "the training error rate is: %f" % (float(errorCount)/m) # test other dataArr, labelArr = loadDataSet('testSetRBF2.txt') errorCount = 0 dataMat = mat(dataArr); labelMat = mat(labelArr).transpose() m,n = shape(dataMat) for i in range(m): kernelEval = kernelTrans(sVs, dataMat[i,:],('rbf',k1)) predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b if sign(predict) != sign(labelArr[i]): errorCount += 1 print errorCount, m print "the training error rate is: %f" % (float(errorCount)/m) # plot the figure dataArr=array(dataArr); labelArr=array(labelArr) plot(dataArr,labelArr, sVs) def img2vector(filename): returnVect = zeros((1,1024)) fr = open(filename) for i in range(32): lineStr = fr.readline() for j in range(32): returnVect[0,32*i+j] = int(lineStr[j]) return returnVect def loadImages(dirName): from os import listdir hwLabels = [] trainingFileList = listdir(dirName) m = len(trainingFileList) trainingMat = zeros((m, 1024)) for i in range(m): fileNameStr = trainingFileList[i] fileStr = fileNameStr.split('.')[0] classNumStr = int(fileStr.split('_')[0]) if classNumStr == 9: hwLabels.append(-1) else: hwLabels.append(1) trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr)) return trainingMat, hwLabels def testDigits(kTup=('rbf', 10)): dataArr, labelArr = loadImages('trainingDigits') b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup) dataMat = mat(dataArr); labelMat = mat(labelArr).transpose() svInd = nonzero(alphas.A>0)[0] sVs = dataMat[svInd] labelSV = labelMat[svInd] print "there are %d Support Vectors" % shape(sVs)[0] m,n = shape(dataMat) errorCount = 0 for i in range(m): kernelEval = kernelTrans(sVs, dataMat[i,:], kTup) predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b if sign(predict) != sign(labelArr[i]): errorCount += 1 print "the training error rate is: %f" % (float(errorCount)/m) dataArr, labelArr = loadImages('testDigits') errorCount = 0 dataMat = mat(dataArr); labelMat = mat(labelArr).transpose() m,n = shape(dataMat) for i in range(m): kernelEval = kernelTrans(sVs, dataMat[i,:], kTup) predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b if sign(predict) != sign(labelArr[i]): errorCount += 1 print "the test error rate is: %f" % (float(errorCount)/m) # TEST testRbf()

3 執行結果

這裡寫圖片描述

這裡寫圖片描述