B樹、B-樹、B+樹、B*樹介紹,和B+樹更適合做文件索引的原因
今天看數據庫,書中提到:由於索引是采用 B 樹結構存儲的,所以對應的索引項並不會被刪除,經過一段時間的增刪改操作後,數據庫中就會出現大量的存儲碎片, 這和磁盤碎片、內存碎片產生原理是類似的,這些存儲碎片不僅占用了存儲空間,而且降低了數據庫運行的速度。如果發現索引中存在過多的存儲碎片的話就要進行 “碎片整理”了,最方便的“碎片整理” 手段就是重建索引, 重建索引會將先前創建的索引刪除然後重新創建索引,主流數據庫管理系統都提供了重建索引的功能,比如 REINDEX、REBUILD 等,如果使用的數據庫管理系統沒有提供重建索引的功能,可以首先用DROP INDEX語句刪除索引,然後用ALTER TABLE 語句重新創建索引。
對B樹的概念比較陌生,網上一搜才知道,原來是 binary search tree(二叉搜索樹),貼上全文!
B樹
即二叉搜索樹:
1.所有非葉子結點至多擁有兩個兒子(Left和Right);
2.所有結點存儲一個關鍵字;
3.非葉子結點的左指針指向小於其關鍵字的子樹,右指針指向大於其關鍵字的子樹;
如:
B樹的搜索,從根結點開始,如果查詢的關鍵字與結點的關鍵字相等,那麽就命中;否則,如果查詢關鍵字比結點關鍵字小,就進入左兒子;如果比結點關鍵字大,就進入右兒子;如果左兒子或右兒子的指針為空,則報告找不到相應的關鍵字;
如果B樹的所有非葉子結點的左右子樹的結點數目均保持差不多(平衡),那麽B樹的搜索性能逼近二分查找;但它比連續內存空間的二分查找的優點是,改變B樹結構(插入與刪除結點)不需要移動大段的內存數據,甚至通常是常數開銷;
如:
但B樹在經過多次插入與刪除後,有可能導致不同的結構:
右邊也是一個B樹,但它的搜索性能已經是線性的了;同樣的關鍵字集合有可能導致不同的樹結構索引;所以,使用B樹還要考慮盡可能讓B樹保持左圖的結構,和避免右圖的結構,也就是所謂的“平衡”問題;
實際使用的B樹都是在原B樹的基礎上加上平衡算法,即“平衡二叉樹”;如何保持B樹結點分布均勻的平衡算法是平衡二叉樹的關鍵;平衡算法是一種在B樹中插入和刪除結點的策略;
B-樹
B-tree,即B樹,而不要讀成B減樹,它是一種多路搜索樹(並不是二叉的):
1.定義任意非葉子結點最多只有M個兒子;且M>2;
2.根結點的兒子數為[2, M];
3.除根結點以外的非葉子結點的兒子數為[M/2, M];
4.每個結點存放至少M/2-1(取上整)和至多M-1個關鍵字;(至少2個關鍵字)
5.非葉子結點的關鍵字個數=指向兒子的指針個數-1;
6.非葉子結點的關鍵字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];
7.非葉子結點的指針:P[1], P[2], …, P[M];其中P[1]指向關鍵字小於K[1]的子樹,P[M]指向關鍵字大於K[M-1]的子樹,其它P[i]指向關鍵字屬於(K[i-1], K[i])的子樹;
8.所有葉子結點位於同一層;
如:(M=3)
B-樹的搜索,從根結點開始,對結點內的關鍵字(有序)序列進行二分查找,如果命中則結束,否則進入查詢關鍵字所屬範圍的兒子結點;重復,直到所對應的兒子指針為空,或已經是葉子結點;
B-樹的特性:
1.關鍵字集合分布在整顆樹中;
2.任何一個關鍵字出現且只出現在一個結點中;
3.搜索有可能在非葉子結點結束;
4.其搜索性能等價於在關鍵字全集內做一次二分查找;
5.自動層次控制;
由於限制了除根結點以外的非葉子結點,至少含有M/2個兒子,確保了結點的至少利用率,其最底搜索性能為:
其中,M為設定的非葉子結點最多子樹個數,N為關鍵字總數;
所以B-樹的性能總是等價於二分查找(與M值無關),也就沒有B樹平衡的問題;
由於M/2的限制,在插入結點時,如果結點已滿,需要將結點分裂為兩個各占M/2的結點;刪除結點時,需將兩個不足M/2的兄弟結點合並;
B+樹
B+樹是B-樹的變體,也是一種多路搜索樹:
1.其定義基本與B-樹同,除了:
2.非葉子結點的子樹指針與關鍵字個數相同;
3.非葉子結點的子樹指針P[i],指向關鍵字值屬於[K[i], K[i+1])的子樹(B-樹是開區間);
5.為所有葉子結點增加一個鏈指針;
6.所有關鍵字都在葉子結點出現;
如:(M=3)
B+的搜索與B-樹也基本相同,區別是B+樹只有達到葉子結點才命中(B-樹可以在非葉子結點命中),其性能也等價於在關鍵字全集做一次二分查找;
B+的特性:
1.所有關鍵字都出現在葉子結點的鏈表中(稠密索引),且鏈表中的關鍵字恰好是有序的;
2.不可能在非葉子結點命中;
3.非葉子結點相當於是葉子結點的索引(稀疏索引),葉子結點相當於是存儲(關鍵字)數據的數據層;
4.更適合文件索引系統;
原因: (2)增刪文件(節點)時,效率更高,因為B+樹的葉子節點包含所有關鍵字,並以有序的鏈表結構存儲,這樣可很好提高增刪效率。
B*樹
是B+樹的變體,在B+樹的非根和非葉子結點再增加指向兄弟的指針;
B*樹定義了非葉子結點關鍵字個數至少為(2/3)*M,即塊的最低使用率為2/3(代替B+樹的1/2);
B+樹的分裂:當一個結點滿時,分配一個新的結點,並將原結點中1/2的數據復制到新結點,最後在父結點中增加新結點的指針;B+樹的分裂只影響原結點和父結點,而不會影響兄弟結點,所以它不需要指向兄弟的指針;
B*樹的分裂:當一個結點滿時,如果它的下一個兄弟結點未滿,那麽將一部分數據移到兄弟結點中,再在原結點插入關鍵字,最後修改父結點中兄弟結點的關鍵字(因為兄弟結點的關鍵字範圍改變了);如果兄弟也滿了,則在原結點與兄弟結點之間增加新結點,並各復制1/3的數據到新結點,最後在父結點增加新結點的指針;
所以,B*樹分配新結點的概率比B+樹要低,空間使用率更高;
小結
B樹:二叉樹,每個結點只存儲一個關鍵字,等於則命中,小於走左結點,大於走右結點;
B-樹:多路搜索樹,每個結點存儲M/2到M個關鍵字,非葉子結點存儲指向關鍵字範圍的子結點;
所有關鍵字在整顆樹中出現,且只出現一次,非葉子結點可以命中;
B+樹:在B-樹基礎上,為葉子結點增加鏈表指針,所有關鍵字都在葉子結點中出現,非葉子結點作為葉子結點的索引;B+樹總是到葉子結點才命中;
它更適合文件索引系統;
相對於B樹,(1)B+樹空間利用率更高,因為B+樹的內部節點只是作為索引使用,而不像B-樹那樣每個節點都需要存儲硬盤指針。
(2)增刪文件(節點)時,效率更高,因為B+樹的葉子節點包含所有關鍵字,並以有序的鏈表結構存儲,這樣可很好提高增刪效率。
B*樹:在B+樹基礎上,為非葉子結點也增加鏈表指針,將結點的最低利用率從1/2提高到2/3;
B樹、B-樹、B+樹、B*樹介紹,和B+樹更適合做文件索引的原因